Các kĩ thuật siêu phân giải "true" Hiển vi siêu phân giải

Hiển vi quang học quét trường gần (Near-field scanning optical microscope - NSOM)

Kĩ thuật này còn được gọi là NSOM. Kĩ thuật này dùng nguồn sáng và/hoặc đầu thu có kích thước nano mét. Sự nhiễu xạ chúng ta đã biết chỉ đúng ở trường xa: ánh sáng qua một lỗ sẽ là biến đổi Fourier của lỗ đó ở trường xa.[9] Kính hiển vi quang học quét trường gần đưa ánh sáng qua một đầu sợi quang rất nhỏ có khẩu độ (đường kính) chỉ vài chục nano mét.[10] Khi đầu sợi quang các phân tử vài nano mét, độ phân giải sẽ không còn bị giới hạn bởi nhiễu xạ mà bởi kích thước khẩu độ của đầu sợi quang. Hình ảnh hiển vi thu được bằng cách quét đầu sợi quang trên bề mặt.

Điểm bất lợi chính của NSOM là sự giới hạn của số photon có thể đi qua đầu sợi quang và hiệu suất thu thấp (nếu thu huỳnh quang ở trường gần). Các kĩ thuật khác như ANSOM được đề xuất để vượt qua hạn chế này.

Tăng cường cục bộ (local enhancement) / ANSOM / ăng ten quang học nano

ANSOM là NSOM không sử dụng khẩu độ nhỏ: phương pháp này đưa đầu đo tới gần hạt phát quang để tăng cường trường điện từ định xứ tại vị trí của hạt.[11] Về cơ bản, đầu dò ANSOM có tác dụng như một cột thu lôi tạo ra một điểm rất sáng.

Ăng ten nano Bowtie được sử dụng để tăng cường độ điện trường ở khoảng giữa hai đầu tam giác bằng vàng. Điểm này lại tăng cường cường độ điện trường cho một vùng nhỏ hơn giới hạn nhiễu xạ do đó phá vỡ được giới hạn này.[12][13]

Kính hiển vi quang học dò trường gần ngẫu nhiên (Near-field optical random mapping - NORM)

Hiển vi NORM là phương pháp ghi nhận trường gần bằng kính hiển vi trường xa thông qua việc theo dõi chuyển động Brownian của các hạt nano trong dung dịch.[14][15] Trên kính hiển vi, ảnh của các hạt nano là các chấm hình tròn đối xứng. Đường kính của các chấm này tương đương hàm mở rộng điểm (cỡ 250 nm) của kính hiển vi. Tọa độ trên mặt xy của chấm có thể xác định với độ chính xác cao hơn độ phân giải của kính hiển vi nhiều lần. Bằng cách thu nhiều ảnh, người ta có thể xác định phân bố cường độ của trường gần trong phạm vi quan sát của kính hiển vi. So sánh với NSOM và ANSOM, phương pháp này không yêu cầu thiết bị đặc biệt để dịch chuyển chính xác đầu dò và có trường quan sát rộng hơn cũng như độ sâu khảo sát lớn hơn. Do dùng một lượng đầu dò lớn, ảnh siêu phân giải có thể thu được trong thời gian ngắn hơn.

4Pi

Kính hiển vi 4Pi là kính hiển vi huỳnh quang quét laser với phân giải dọc (phân giải theo độ sâu) tốt hơn. Độ phân giải dọc từ 500-700 nm được giảm xuống còn 100–150 nm, tức là vết hội tụ có dạng gần tròn với thể tích nhỏ hơn từ 5-7 lần so với vết kích thích trên kính hiển vi đồng tiêu thông thường.

Kính hiển vi loại này dùng hai vật kính ngược nhau cùng hội tụ lên một vị trí. Sự khác nhau về quang trình qua mỗi vật kính được căn chỉnh sao cho nhỏ nhất. Do đó nguyên tử ở mặt phẳng tiêu chung được chiếu sáng bằng nguồn sáng kết hợp ở cả hai phía và sự phản xạ hay phát xạ cũng được thu một cách kết hợp. Góc khối Ω {\displaystyle \Omega } dùng để chiếu sáng và thu nhận được tăng dần cho tới giá trị tối ưu. Khi đó, mẫu được chiếu và thu nhận đồng thời từ mọi phía.[16][17]

Hiện nay, chất lượng tốt nhất của kính hiển vi 4Pi đạt được khi sử dụng thêm nguyên lý STED.[18]

Hiển vi chiếu sáng có cấu trúc (Structured illumination microscopy - SIM)

Ảnh hiển vi quét laser đồng tiêu (trên) và ảnh hiển vi chiếu sáng có cấu trúc 3D (3D-SIM, dưới) cho thấy chi tiết về màng nhân (nuclear envelope). Nuclear pores (anti-NPC) màu đỏ, màng nhân (anti-Lamin) xanh lá, chromatin (nhuộm DAPI) xanh lơ. Thang: 1µm.

Đây cũng là một phương thức trường xa để vượt qua giới hạn nhiễu xạ.[19][20] Ý tưởng chính của phương pháp này là chiếu sáng mẫu bằng một nguồn sáng có cấu phân bố cường độ tuần hoàn và phân tích hình ảnh Moiré (Moiré pattern) thu được do sự giao thoa của cấu trúc chiếu sáng và mẫu.[21]

Phương pháp này tăng độ phân giải bằng cách thực hiện biến đổi Fourier của ảnh thu được; với một số ảnh được chiếu sáng với độ dịch pha khác nhau, có thể tính toán một cách riêng rẽ và dựng lại ảnh FT với thông tin chi tiết hơn về không gian. Phép biến đổi Fourier ngược sẽ tạo ra hình ảnh siêu phân giải.

  • Images of cell nucleimitotic stages recorded with 3D-SIM Microscopy.
  • Hiển vi đồng tiêu – 3D-SIM
  • Nhân tế bào ở giai đoạn tiền phân bào với các góc khác nhau.
  • Hai nhân tế bào chuột ở giai đoạn tiền phân bào.
  • Tế bào chuột cuối giai đoạn phân bào

Chiếu sáng biến điệu không gian (Spatially modulated illumination - SMI)

Ảnh SMI + TIRF của mô mắt người bị thoái hóa điểm vàng

SMI sử dụng kĩ thuật làm thay đổi hàm mở rộng điểm của kính hiển vi nhằm tăng độ phân giải. Kính hiển vi Vertico SMI hoạt động theo nguyên lý sau: cường độ chiếu sáng lên mẫu không đồng nhất (ngược so với kính hiển vi huỳnh quang thông thường), mà được biến điệu theo không gian bằng cách dùng một hoặc hai chùm laser ngược nhau và cho giao thoa. Vật kính được dịch với độ chính xác cao hoặc trường sáng được dịch so với vật kính bằng bản dịch pha. Kết quả là tăng được độ sâu ảnh hiển vi và độ phân giải.[22][23][24]

SMI có thể được kết hợp với các kĩ thuật siêu hiển vi khác như 3D LIMON hoặc LSI-TIRF. Kĩ thuật này đã được sử dụng để thu ảnh phân bố của phân tử tự phát quang (autofluorophore) trên các lát mô mắt người. Ba bước sóng kích khác nhau (488, 568 and 647 nm) được sử dụng cho phép thu nhận các thông tin về phổ của các phân tử tự phát quang. Kĩ thuật này cũng được sử dụng nghiên cứu mô mắt người bị thoái hòa điểm vàng AMD.[25]

Tài liệu tham khảo

WikiPedia: Hiển vi siêu phân giải http://blog.everydayscientist.com/?p=184 http://blog.everydayscientist.com/?p=354 http://apnews.excite.com/article/20141008/nobel-ch... http://www.falstad.com/diffraction/ http://www.nature.com/nmeth/journal/v5/n6/pdf/nmet... http://www.nytimes.com/2014/10/09/science/nobel-pr... http://www.olympusmicro.com/primer/techniques/near... http://link.springer.com/article/10.1140%2Fepjh%2F... http://www.tandfonline.com/doi/abs/10.1080/0010751... http://www.kip.uni-heidelberg.de/AG_Cremer/pdf-fil...